Oct.1.2018 Copyright 2018 HIROSE ELECTRIC CO., LTD. All Rights Reserved. In case that the application demands a high level of reliability, such as automotive, please contact a company representative for further information. | COUNT | DESCRIPTION OF F | REVISIONS | BY | CHKD | DATE | C | COUNT | DESCRIPT | TION OF REV | VISIONS | BY | CHKD | DATI | E | |---|--|--|---|--|---|--|--|---|--|---|---|---|---|--------------| | ADDI TO | CARLE CEANE | ADD | | | | | 1 | | | | | | • | • | | APPLIC | CABLE STANDA
TOPERATING TEMPERA | | p _0 | 20% | TO 105°C | ¬ | . Стог | DACE TEM | DEDATIBE D | ANCE | 40℃ | TO + | -105℃ | | | RATING | | TURES KANG | E -0 | | | (NOTE | | | | ANGE | 40 C | | 100 C | | | | VOLTAGE | | | - : | 250 V AC | | JCU. | RRENT | | | | 1 A | | | | | | | () | SPE | \mathbf{CIFI} | CAT | $\Gamma \Pi 0$ | NS | | | | | | | | I | TEM | TEST METHOD | | | | | | REQUIREMENTS | | | | | QT | AT | | | RUCTION | | | | | | | | | | | | | <u> </u> | | GENERAL | EXAMINATION | VISUALLY AND BY MEASURING INSTRUMENT. | | | | | | ACCORDI | ING TO DRA | AWING. | | | | Q | | MARKING | RICAL CHARAC | CONFIRMED | | ALLY. | | | | | | | | | $\overline{10}$ | 10 | | | RESISTANCE | TERISI
11 A DC. | 103 | | | | 1 | 30 mΩ | MAX. | | | | $\neg \tau =$ | T- | | CONTACT | RASISTANCE | 20 mV AC | MAX, | 0.1 m/ | A (DC OR 100 | 00 Hz) |) | 30 mΩ | MAX. | | | | | T- | | | T LEVEL METHOD ON RESISTANCE | 500 V | | | | | | 100 MΩ | | | | | 10 | | | VOLTAGE | | 650 V | | R 1 MI | :N | | | NO FLAS | SHOVER OR | BREAKDOW | N. | | | | | | NICAL CHARAC
INSERTION AND | | | STEEL. | GAUGE. | | | INSERTI | ON FORCE | N | MAX. | | | Τ- | | EXTRACTION FORCES | | | | | | | | EXTRACT | ION FORCE
TION FORCE | <u>E 1</u> | N MIN. | | 二三 | E | | MECHANICAL OPERATION | | 30 TIMES INSERTIONS AND EXTRACTIONS. | | | | | | ① CONTACT RESISTANCE:60 m Ω MAX.
② NO DAMAGE. CRACK AND LOOSENESS OF | | | | | ; <u> </u> | ⊨ | | VIBRATIO | N | FREQUENCY | V 20 T | <u>በ ኃስ</u> ስ | На | | | PART | IS.
ELECTRICAI | DISCONT | ידוווודי | V OF | | ┢ | | 4 TOKALIO | 14 | AMPLITUDE | E – ma | m, 43. | nz,
.1 m/S² A' | T 3 h | | 10 | μs. | | | | | | | | | FOR 3 DII | RECT 10 | NS. | | | | (2) CON1 | TACT RESIS
DAMAGE, CI | STANCE: 60 | mΩ l | MAX.
NESS OF | ; <u>=</u> | H | | | | | | | | | | PART | rs. | | | | | | | SHOCK | SHOCK | | Y 20 To
2 AT | 0 50 I
1 h | Hz, | | | ① NO E
μs. | ELECTRICAL | L DISCONT | INUIT | Y 0F10 | - | - | | | | | *** | | | | | ② CONT | TACT RESIS | | | | | | | | | | | | | | | (3) NO E | DAMAGE. CI
ES. | RACK AND | LOOSE | NESS OF | , 0 | - | | LOCK STRENGTH | | APPLYING A PULL FORCE THE MATING | | | | | | ① DURI | ING APPLY | ING, MATI | NG CO | MPLETEI | | • | | | | AXIALLY A | AT 98N | MAX. | | | | | ER APPLYIN
ING PARTS. | | FECT | OF | | - | | | ONMENTAL CHA | ARACTER | RISTI | .CS | | | | | | | | | | * | | | DAMP HEAT
(STEADY STATE) | | AT 60 | °C, 90 | O TO 95 %, | 500 1 | h. | | TACT RESIS | | | | = | = | | (SIEMDI) | | | | | | | | 3 NO [| DAMAGE, CI | | | | | | | RAPID CH | ANCE OF | TEMPERATUR | F -40 - | → 5 TO | 35 → 85 → | 5 TO 1 | 35 °C | PART
(1) CONT | ΓS.
ΓACT RESIS | STANCE : 60 | mO l | MAY | | ╁ | | TEMPERAT | | TEMPERATURE $-40 \rightarrow 5$ TO $35 \rightarrow 85 \rightarrow 5$ TO 35 °C TIME $30 \rightarrow 5 \rightarrow 30 \rightarrow 5$ MIN | | | | | | | JLATION RE | ESISTANCE | | | - | | | TEMPEKAI | URE | TIME | 30 - | | 7 30 3 | MIIN | | | ③ NO DAMAGE, CRACK AND LOOSENESS OF PART. | | | | | | | i emeeka I | URE | | 30 - | | 7 30 -7 5 | MIIN | | 3 NO [| | RACK AND | | | | Ī — | | | | TIME | 30
00 CYC | LES. | | MIN | | 3 NO II
PART
1 CONT | Γ.
FACT RESIS | STANCE: 60 | LOOSE | NESS OF | ; <u>0</u>
= | | | DRY HEAT | | TIME
UNDER 100
EXPOSED A | 30 -
00 CYC
AT 105 | C, | 300 h. | MIN | | 3 NO II PART 1 CONT 2 NO H | r.
ract resis
Heavy cori | STANCE: 60
ROSION. | LOOSE! | MAX. | | | | DRY HEAT | | TIME
UNDER 100
EXPOSED A | 30
00 CYC
AT 105
AT -55 | C, C | 300 h.
120 h. | | | 3 NO II PARTO (1) CONTO (2) NO H | r.
FACT RESIS
HEAVY CORI
FACT RESIS
HEAVY CORI | STANCE: 60
ROSION.
STANCE: 60
ROSION. | LOOSEI
mΩ] | MAX. | ; <u>0</u>
= | | | DRY HEAT | | TIME
UNDER 100
EXPOSED A | 30
00 CYC
AT 105
AT -55 | C, C | 300 h. | | | 3 NO I PART 1 CONT 2 NO I CONT 2 NO I CONT 2 NO I CONT | TACT RESISTED FOR RESISTE | STANCE: 60
ROSION.
STANCE: 60
ROSION.
STANCE: 60 | LOOSEI
mΩ] | MAX. | 7 O
-
0
- | | | DRY HEAT COLD CORROSIO | | TIME UNDER 100 EXPOSED A EXPOSED A | 30 00 CYC AT 105 AT -55 IN 5% | C, S | 300 h.
120 h.
WATER SPRA | | | 3 NO I PART 1 CONT 2 NO I CONT | F. FACT RESIS HEAVY CORI FACT RESIS HEAVY CORI FACT RESIS HEAVY CORI FACT RESIS | STANCE: 60
ROSION.
STANCE: 60
ROSION.
STANCE: 60
ROSION.
STANCE: 60 | LOOSEI
mΩ)
mΩ) | MAX. MAX. | ; 0
-0-0-0-0-0-10-10-10-10-10-10-10-10-10-10 | | | DRY HEAT COLD CORROSIO | N, SALT MIST CE TO HSO ³ GAS | EXPOSED A EXPOSED A EXPOSED A EXPOSED B 96 h. EXPOSED B | 30 00 CYC AT 105 AT -55 IN 5% : | C, S | 300 h.
120 h.
WATER SPRA | Y FOR | | 3 NO I PART 1 CONT 2 NO F | F. FACT RESIS HEAVY CORNITACT RESIS HEAVY CORNITACT RESIS HEAVY CORNITACT RESIS | STANCE: 60
ROSION.
STANCE: 60
ROSION.
STANCE: 60
ROSION.
STANCE: 60
ROSION. | LOOSEI mΩ mΩ mΩ mΩ mΩ mΩ mΩ mΩ mΩ m | MAX. MAX. MAX. | ; | | | DRY HEAT COLD CORROSIO RESISTAN RESISTAN SOLDERIN | N, SALT MIST CE TO HSO ³ GAS CE TO G HEAT | EXPOSED A EXPOSED A EXPOSED A EXPOSED B 96 h. EXPOSED B SOLDER TILLIMMERSION | 30 00 CYC AT 105 AT -55 IN 5% : IN 500 EMPERA' N, DUR | C, SALT V PPM I TURE, | 300 h. 120 h. WATER SPRAY FOR 8 h. 260 °C FOI 10 s. | Y FOR | | 3 NO I PART 1 CONT 2 NO I 4 CONT 5 NO DEFC 6 LOOSENE | FACT RESISTED FA | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE O E TERMINA | LOOSEI $m\Omega$ $m\Omega$ $m\Omega$ $m\Omega$ $m\Omega$ $m\Omega$ $m\Omega$ $m\Omega$ | MAX. MAX. MAX. MAX. ESSIVE | | | | DRY HEAT COLD CORROSIO RESISTAN RESISTAN SOLDERIN | N, SALT MIST CE TO HSO ³ GAS CE TO G HEAT | EXPOSED A EXPOSED A EXPOSED A EXPOSED B 96 h. EXPOSED B SOLDER TILLIMMERSION | 30 00 CYC AT 105 AT -55 IN 5% : IN 500 EMPERA' N, DUR AT SO | C, SALT V PPM I TURE, ATION, LDER | 300 h. 120 h. WATER SPRAY FOR 8 h. 260 °C FOI , 10 s. TEMPERATURI | Y FOR | 0°C | 3 NO I PART 1 CONT 2 NO I CONT 4 NO DEFO LOOSENE A NEW I COVER A | FACT RESISTED FOR THE STATE OF | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE O E TERMINA OATING OF | LOOSEI $ \begin{array}{cccc} & m \Omega & I \\ \hline & m \Omega & I \end{array} $ $ \begin{array}{cccc} & m \Omega & I \\ \hline & m \Omega & I \end{array} $ F EXCILLS. | MAX. MAX. MAX. MAX. ESSIVE | | | | DRY HEAT COLD CORROSIO RESISTAN RESISTAN SOLDERIN SOLDERAB | N, SALT MIST CE TO HSO ³ GAS CE TO G HEAT ILITY | EXPOSED A EXPOSED A EXPOSED A EXPOSED B SOLDER TI IMMERSION SOLDERED FOR IMMER | 30 00 CYC AT 105 AT -55 IN 5%: IN 500 EMPERA' N, DUR AT SO RSION | C, SALT V PPM I TURE, ATION, LDER C | FOR 8 h. 260 °C FOI , 10 s. TEMPERATURI | Y FOR
R
E, 230 | 0°C | 3 NO I PART 1 CONT 2 NO I CONT 2 NO I CONT 2 NO I CONT 2 NO I NO DEFO LOOSENE A NEW L COVER A BEING I | FACT RESIS HEAVY CORN | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE 0 E TERMINA OATING OF OF 95 % | MΩ) | MAX. MAX. MAX. ESSIVE ER SHALE SURFA | 7 O | | | DRY HEAT COLD CORROSIO RESISTAN RESISTAN SOLDERIN SOLDERAB | N, SALT MIST CE TO HSO ³ GAS CE TO G HEAT | EXPOSED / EXPOSED / EXPOSED / 96 h. EXPOSED / SOLDER THIMMERSION SOLDERED FOR IMMERSION GUEXPOSEI ②IMMERSI | 30 00 CYC AT 105 AT -55 IN 5%: IN 500 EMPERA' N, DUR AT SO RSION : D TO 8' ED IN ' | C, SALT V PPM I TURE, ATION, LDER S DURAT: O°C EI THE W | 300 h. 120 h. WATER SPRAY FOR 8 h. 260 °C FOI , 10 s. TEMPERATURI ION, 3 S VVIROMENT I | Y FOR R E, 230 FOR 11 E DEP | 0 ℃
h, | 3 NO I PART 1 CONT 2 NO I CONT 2 NO I CONT 2 NO I CONT 2 NO I NO DEFO LOOSENE A NEW L COVER A BEING I | FACT RESISTED FOR THE STATE OF | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE 0 E TERMINA OATING OF OF 95 % | MΩ) | MAX. MAX. MAX. ESSIVE ER SHALE SURFA | | | | DRY HEAT COLD CORROSIO RESISTAN RESISTAN SOLDERIN SOLDERAB | N, SALT MIST CE TO HSO ³ GAS CE TO G HEAT ILITY | EXPOSED // EXPOSED // EXPOSED // EXPOSED // 96 h. EXPOSED // SOLDER TI IMMERSION SOLDERED FOR IMMERSION (DEXPOSEI (2) IMMERSION 100mm FOR | 30 00 CYC AT 105 AT -55 IN 5%: IN 500 EMPERA' AT SO AT SO TO 80 ED IN 'R R 0. 5h, | C, SALT V PPM I TURE, ATION, LDER COURATT OCE THE WA | 300 h. 120 h. WATER SPRANT FOR 8 h. 260 °C FOI , 10 s. TEMPERATURI ION, 3 S NVIROMENT I | Y FOR R E, 230 FOR 11 E DEP | 0°C
h,
TH
NT | 3 NO I PART 1 CONT 2 NO I CONT 2 NO I CONT 2 NO I CONT 2 NO I NO DEFO LOOSENE A NEW L COVER A BEING I | FACT RESIS HEAVY CORN | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE 0 E TERMINA OATING OF OF 95 % | MΩ) | MAX. MAX. MAX. ESSIVE ER SHALE SURFA | 7 O | | | DRY HEAT COLD CORROSION RESISTANO SOLDERING SOLDERAB RESISTANO RESISTANO | N, SALT MIST CE TO HSO ³ GAS CE TO G HEAT ILITY CE TO WATER | EXPOSED // EXPOSED // EXPOSED // EXPOSED // 96 h. EXPOSED // SOLDER TI IMMERSION SOLDERED FOR IMMERSION (DEXPOSEI (2) IMMERSION TEMPERATION | 30 00 CYC AT 105 AT -55 IN 5%: IN 500 EMPERA' AT SO RSION 1 D TO 86 ED IN 6 R 0. 5h, URE FO | C, SALT V PPM I TURE, ATION, LDER COURATT OCE THE W, , ③LEI R 2h, S | 300 h. 120 h. WATER SPRAY FOR 8 h. 260 °C FOI , 10 s. TEMPERATURI ION, 3 S VVIROMENT I | Y FOR R E, 230 FOR 11 E DEP' AMBIEN ND ③ | 0°C
h,
TH
NT
ARE | 3 NO I PART 1 CONT 2 NO I NO DEFO LOOSENE A NEW I COVER A BEING I NO WAT | F. FACT RESIS HEAVY CORNITACT RESIS HEAVY CORNITACT RESIS HEAVY CORNITACT RESIS HEAVY CORNITACT RESIS OF THE JINIFORM COLUMN MINIMUM COMMERSED. | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE O E TERMINA OATING OF OF 95 % FRATION I | LOOSE mΩ mΩ mΩ mΩ mΩ FEXCILS. SOLDI OF THI PERMIT | MAX. MAX. MAX. ESSIVE ER SHAL E SURFA | - O - O - O - O - O - O - O - O - O - O | | | DRY HEAT COLD CORROSIO RESISTAN SOLDERIN SOLDERAB RESISTAN | N, SALT MIST CE TO HSO ³ GAS CE TO G HEAT ILITY CE TO WATER | EXPOSED A EXPOSED A EXPOSED A EXPOSED A EXPOSED B SOLDER TI IMMERSION SOLDERED FOR IMMER © IMMERSION TEMPERATU 1 CYCLE, | 30 00 CYC AT 105 AT -55 IN 5%: IN 500 EMPERA N, DUR AT SO RSION 1 D TO 80 ED IN 7 R 0. 5h, URE FOUR 10CYC | C, SALT V PPM I TURE, ATION, LDER COURATTHE W/, ③LER R 2h, SCLES I | 300 h. 120 h. WATER SPRAY FOR 8 h. 260 °C FOR 10 s. TEMPERATURI ION, 3 S VIROMENT I ATER TO THE FT IN THE A STEPS ② AF PERFORMED | Y FOR R E, 230 FOR 11 E DEP' AMBIEN ND ③ | 0°C
h,
TH
NT | 3 NO I PART 1 CONT 2 NO I CONT 2 NO I CONT 2 NO I CONT 2 NO I NO DEFO LOOSENE A NEW L COVER A BEING I | F. FACT RESIS HEAVY CORNITACT RESIS HEAVY CORNITACT RESIS HEAVY CORNITACT RESIS HEAVY CORNITACT RESIS OF THE JINIFORM COLUMN MINIMUM COMMERSED. | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE 0 E TERMINA OATING OF OF 95 % | MΩ) | MAX. MAX. MAX. ESSIVE ER SHAL E SURFA | 7 O | | | DRY HEAT COLD CORROSIO RESISTAN SOLDERIN SOLDERAB RESISTAN | N, SALT MIST CE TO HSO ³ GAS CE TO G HEAT ILITY CE TO WATER | EXPOSED A EXPOSED A EXPOSED A EXPOSED A EXPOSED B SOLDER TI IMMERSION SOLDERED FOR IMMER © IMMERSION TEMPERATU 1 CYCLE, | 30 00 CYC AT 105 AT -55 IN 5%: IN 500 EMPERA N, DUR AT SO RSION 1 D TO 80 ED IN 7 R 0. 5h, URE FOUR 10CYC | C, SALT V PPM I TURE, ATION, LDER COURATTHE W/, ③LER R 2h, SCLES I | 300 h. 120 h. WATER SPRAY FOR 8 h. 260 °C FOR 10 s. TEMPERATURI ION, 3 S VIROMENT I ATER TO THE FT IN THE A STEPS ② AF PERFORMED | Y FOR R E, 230 FOR 11 E DEP' AMBIE! ND ③ | o°C h, TH NT ARE | 3 NO I PART 1 CONT 2 NO I NO DEFO LOOSENE A NEW U COVER A BEING I NO WAT | F. FACT RESIS HEAVY CORFORD TACT RESIS HEAVY CORFORD TACT RESIS HEAVY CORFORD TACT RESIS HEAVY CORFORMATION DESS OF THE JINIFORM COMMERSED. | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE O E TERMINA OATING OF OF 95 % FRATION F | LOOSEI mΩ I mΩ I mΩ I mΩ I FEXCILS. SOLDI OF THI PERMI | MAX. MAX. MAX. ESSIVE ER SHALE SURFA | - O - O - O - O - O - O - O - O - O - O | | | DRY HEAT COLD CORROSIO RESISTAN SOLDERIN SOLDERAB RESISTAN | N, SALT MIST CE TO HSO ³ GAS CE TO G HEAT ILITY CE TO WATER | EXPOSED A EXPOSED A EXPOSED A EXPOSED A EXPOSED B SOLDER TI IMMERSION SOLDERED FOR IMMER © IMMERSION TEMPERATU 1 CYCLE, | 30 00 CYC AT 105 AT -55 IN 5%: IN 500 EMPERA N, DUR AT SO RSION 1 D TO 80 ED IN 7 R 0. 5h, URE FOUR 10CYC | C, SALT V PPM I TURE, ATION, LDER COURATTHE W/, ③LER R 2h, SCLES I | 300 h. 120 h. WATER SPRAY FOR 8 h. 260 °C FOR 10 s. TEMPERATURI ION, 3 S VIROMENT I ATER TO THE FT IN THE A STEPS ② AF PERFORMED | Y FOR R E, 230 FOR 11 E DEP' AMBIE! ND ③ . DI | O°C h, TH NT ARE RAWN | 3 NO I PART 1 CONT 2 NO I NO DEFO LOOSENE A NEW U COVER A BEING I NO WAT | F. FACT RESIS HEAVY CORPORED CORPORATION DESIGNATION D | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE O E TERMINA OATING OF OF 95 % TRATION F | LOOSEI mΩ mΩ mΩ mΩ mΩ mΩ pF EXCI LS. SOLDI OF THI PERMT APPRO | MAX. MAX. MAX. ESSIVE ER SHALE E SURFA | - O - O - O - O - O - O - O - O - O - O | | | DRY HEAT COLD CORROSION RESISTANO RESISTANO SOLDERAB RESISTANO RESISTANO RESISTANO RESISTANO RESISTANO RESISTANO RESISTANO REMARK | N, SALT MIST CE TO HSO ³ GAS CE TO G HEAT ILITY CE TO WATER | EXPOSED A EXPOSED A EXPOSED A EXPOSED A SOLDER THE SOLDERED FOR IMMERSION SOLDERED FOR IMMERSION TEMPERATURE RICE A EXPOSED | 30 00 CYC AT 105 AT -55 IN 5%: IN 500 EMPERA'N, DUR AT SOI R SION 1 R 0. 5h, URE FOI 10CYC SING B | C, S C, S SALT V PPM I TURE, ATION, LDER S DURAT: O'C EI THE W, (3) LEI R 2h, S CLES I | 300 h. 120 h. WATER SPRAY FOR 8 h. 260 °C FOI 10 s. TEMPERATURI ION, 3 S NVIROMENT I ATER TO THI FT IN THE A STEPS ② AP PERFORMED. RENT. | Y FOR R E, 230 FOR 11 E DEP AMBIE ND ③ . DI S. KU ' 02. | o°C h, TH NT ARE RAWN URIYA 10. 10 | 3 NO I PART 1 CONT 2 NO I NO DEFO LOOSENE A NEW I COVER I NO WAT DESIGN S. KUR 1 O2. 1 | F. FACT RESIS HEAVY CORF HEAVY CORF FACT RESIS HEAVY CORF CO | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE O E TERMINA OATING OF OF 95 % TRATION F | LOOSEI mΩ I mΩ I mΩ I mΩ I FEXCILS. SOLDI OF THI PERMI | MAX. MAX. MAX. ESSIVE ER SHALE E SURFA | - O - O - O - O - O - O - O - O - O - O | | | DRY HEAT COLD CORROSIO RESISTAN SOLDERIN SOLDERAB RESISTAN RESISTAN REMARK NOTE1 I | N, SALT MIST CE TO HSO' GAS CE TO G HEAT ILITY CE TO WATER (S) NCLUDE THE TEMPE | EXPOSED A EXPOSED A EXPOSED A EXPOSED A EXPOSED A SOLDER TI IMMERSION SOLDERED FOR IMMERSION EXPOSED OTHER CYCLE, CRATURE RI On Test | 30 00 CYC AT 105 AT -55 IN 5%: IN 500 EMPERA' N, DUR AT SO R SION 1 D TO 80 ED IN 60 R 0. 5h, URE FO 10CYC SING B | C, S C, S SALT V PPM I TURE, ATION, LDER S DURAT: O'C EI THE W, (3) LEI R 2h, S CLES I | 300 h. 120 h. WATER SPRAY FOR 8 h. 260 °C FOI 10 s. TEMPERATURI ION, 3 S NVIROMENT I ATER TO THI FT IN THE A STEPS ② AI PERFORMED. RENT. | Y FOR R E, 230 E DEP AMBIE ND ③ S. KU '02. | o°C h, TH NT ARE RAWN URIYA 10.10 Applic | 3 NO I PART (1) CONT (2) NO H (1) CONT (2) NO H (2) NO H (3) NO H (4) CONT (5) NO DEFO (6) LOOSENG (7) A NEW L (7) COVER A (8) BEING I (8) NO WAT DESIGN (9) O2. 1 cable T | FACT RESISTED FOR THE STATE OF | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE O E TERMINA OATING OF OF 95 % FRATION F | DOSE MQ MQ MQ MQ MQ MQ MQ MQ MQ M | MAX. MAX. MAX. ESSIVE ER SHALE SURFA TTED. | - O - O - O - O - O - O - O - O - O - O | | | DRY HEAT COLD CORROSIO RESISTAN RESISTAN SOLDERIN SOLDERAB RESISTAN REMARK NOTE1 I | N, SALT MIST CE TO HSO' GAS CE TO G HEAT ILITY CE TO WATER CS NCLUDE THE TEMPE QT:Qualification | EXPOSED A EXPOSED A EXPOSED A EXPOSED A EXPOSED A SOLDER TI IMMERSION SOLDERED FOR IMMERSION EXPOSED OTHER CYCLE, CRATURE RI On Test | 30 00 CYC AT 105 AT 105 AT -55 IN 5%: IN 500 EMPERA' N, DUR. AT SO RSION I D TO 8 ED IN R R 0. 5h, URE FO L 10CYC SING B AT: As | C, SALT V PPM I TURE, ATION, LDER DURAT: O'C EI THE WAR, (3) LES I SY CUR | 300 h. 120 h. WATER SPRAY FOR 8 h. 260 °C FOR 10 s. TEMPERATURI ION, 3 S NVIROMENT I ATER TO THE FORT TO THE FORT TO THE FORT TO THE PERFORMED RENT. CILICAT | Y FOR R E, 230 E DEP AMBIE ND ③ S. KU '02. | o°C h, TH NT ARE RAWN URIYA 10.10 Applic | 3 NO I PART (1) CONT (2) NO H (1) CONT (2) NO H (2) NO H (3) NO H (4) CONT (5) NO DEFO (6) LOOSENG (7) A NEW L (7) COVER A (8) BEING I (8) NO WAT DESIGN (9) O2. 1 cable T | FACT RESISTED FOR TACT THE PROPERTY OF THE PROPERTY OF TACT RESISTED FOR THE PROPERTY OF TH | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE O E TERMINA OATING OF OF 95 % FRATION F | DOSE MQ MQ MQ MQ MQ MQ MQ MQ MQ M | MAX. MAX. MAX. ESSIVE ER SHALE SURFA TTED. | - O - O - O - O - O - O - O - O - O - O | | | DRY HEAT COLD CORROSIO RESISTAN SOLDERIN SOLDERAB RESISTAN RESISTAN RESISTAN NOTE1 I | N, SALT MIST CE TO HSO' GAS CE TO G HEAT ILITY CE TO WATER CS NCLUDE THE TEMPE QT:Qualification | EXPOSED A EXPOSED A EXPOSED A EXPOSED A EXPOSED A SOLDER TI IMMERSION SOLDERED FOR IMMERSION EXPOSED OTHER CYCLE, CRATURE RI On Test | 30 00 CYC AT 105 AT -55 IN 5%: IN 500 EMPERA'N, DUR, AT SO, RSION : D TO 80 ED IN 'R 0. 5h, URE FO, 10CYC SING B AT:As DRAWI | SALT V PPM I TURE, ATION, LDER TOURATT THE WAR (SLES) BY CUR | 300 h. 120 h. WATER SPRAY FOR 8 h. 260 °C FOR 10 s. TEMPERATURI ION, 3 S NVIROMENT I ATER TO THE FORT TO THE FORT TO THE FORT TO THE PERFORMED RENT. CILICAT | Y FOR R E, 230 FOR 11 E DEP' AMBIEN ND ③ S. KU ' 02. C: A | o°C h, TH NT ARE RAWN URIYA 10.10 Applic | 3 NO I PART (1) CONT (2) NO H (1) CONT (2) NO H (2) NO H (3) NO H (4) CONT (5) NO DEFO (6) LOOSENG (7) A NEW L (7) COVER A (8) BEING I (8) NO WAT DESIGN (9) O2. 1 cable T | F. FACT RESIS HEAVY CORP FORMATION TO SESS OF THE SINIFORM CO A MINIMUM MMERSED. FER PENET FORMATION TO COPY HEAVY CORP HEAVY CORP FORMATION TO COPY COPY HEAVY COPY HEAVY COPY HEAVY COPY HEAVY COPY HEAVY COPY | STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. STANCE: 60 ROSION. IN CASE O E TERMINA OATING OF OF 95 % FRATION F | DOSE MQ MQ MQ MQ MQ MQ MQ MQ MQ M | MAX. MAX. MAX. ESSIVE ER SHAILE SURFA TTED. | F O O O O O O O O O O O O O O O O O O O | |